On rational torsion points of central \mathbb{Q}-curves

Fumio Sairaiji (Hiroshima International University)
Takuya Yamauchi 1 (Hiroshima University)

Abstract

Let E be a central \mathbb{Q}-curve over a polyquadratic field k. In this paper we give an upper bound for prime divisors of the order of the k-rational torsion subgroup $E_{\text{tors}}(k)$. (See Theorems 1.7 and 1.8.) The notion of central \mathbb{Q}-curves is a generalization to that of elliptic curves over \mathbb{Q}. Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bound of Merel [15].

1 Introduction

We review some known results. Let E be an elliptic curve over a number field k of degree d. Let $E(k)$ be the group of k-rational points on E and let $E_{\text{tors}}(k)$ be its torsion subgroup. The Mordell-Weil Theorem asserts that $E(k)$ is a finitely generated abelian group, and thus $\#E_{\text{tors}}(k)$ is finite.

When k is equal to either \mathbb{Q} or a quadratic field, the group structure of $E_{\text{tors}}(k)$ is completely determined.

Theorem 1.1 (Mazur [12]). Assume that k is equal to \mathbb{Q}. Then the group $E_{\text{tors}}(\mathbb{Q})$ is isomorphic to one of the following 15 abelian groups.

$$
\begin{align*}
\mathbb{Z}/N\mathbb{Z} & \quad (1 \leq N \leq 10, \ N = 12) \\
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z} & \quad (1 \leq N \leq 4)
\end{align*}
$$

Specially, each prime divisor of $\#E_{\text{tors}}(\mathbb{Q})$ is less than or equal to 7. For each finite abelian group G in Theorem 1.1, Kubert [11] gives a defining equation parameterizing elliptic curves E such that $E_{\text{tors}}(\mathbb{Q})$ contains G. For example, if $E_{\text{tors}}(\mathbb{Q})$ contains $\mathbb{Z}/6\mathbb{Z}$, E is isomorphic to

$$y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2$$

for some s in \mathbb{Q} such that $\Delta = s^6(s + 1)^3(9s + 1) \neq 0$. Then the point $(0,0)$ is of order 6.

1The author is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.
Theorem 1.2 (Kenku-Momose [10], Kamienny [9]). Let k be a quadratic field. Then the group $E_{\text{tors}}(k)$ is isomorphic to one of the following 25 abelian groups.

- $\mathbb{Z}/N\mathbb{Z}$ \((1 \leq N \leq 14, \ N = 16, 18)\)
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ \((1 \leq N \leq 6)\)
- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3N\mathbb{Z}$ \((N = 1, 2) \ (k = \mathbb{Q}(\sqrt{-3}))\)
- $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ \((k = \mathbb{Q}(\sqrt{-1}))\)

Specially, each prime divisor of $\mathbb{Z}E_{\text{tors}}(k)$ is less than or equal to 13.

For elliptic curves over number fields of degree greater than two, there exist some results on the group structure of $E(k)_{\text{tors}}$ under some conditions (cf. e.g. [6], [21]).

Merel [15] obtains an effective upper bound for prime divisors of $\mathbb{Z}E_{\text{tors}}(k)$ depending only the degree d of k over \mathbb{Q}.

Theorem 1.3 (Merel [15]). Let k be a number field of degree $d > 1$. Each prime divisor of $\mathbb{Z}E_{\text{tors}}(k)$ is less than d^{3d^2}.

Theorem 1.3 implies the following corollary (cf. e.g. [2]), what is called, the universal boundness conjecture.

Corollary 1.4. Let d be a positive integer. Then there exists a constant C_d depending only on d such that $\mathbb{Z}E_{\text{tors}}(k) < C_d$ for any number field k of degree d and for any elliptic curve E over k.

The Merel’s bound d^{3d^2} is effective, but it is large. For example, when $d = 2$, we have $d^{3d^2} = 2^{12} = 4096$. So we want to improve Merel’s bound in case where we restrict E to central \mathbb{Q}-curves.

We introduce the notion of \mathbb{Q}-curves.

Definition 1.5. We call a non-CM elliptic curve E over $\overline{\mathbb{Q}}$ a \mathbb{Q}-curve if there exists an isogeny ϕ_σ from $^\sigma E$ to E for each σ in the absolute Galois group $G_\mathbb{Q}$ of \mathbb{Q}. Furthermore, we call a \mathbb{Q}-curve E central if we can take an isogeny ϕ_σ with square-free degree for each σ in $G_\mathbb{Q}$.

Theorem 1.6 (Elkies [3]). Each \mathbb{Q}-curve is isogenous to a central \mathbb{Q}-curve defined over a polyquadratic field.

Let E be a central \mathbb{Q}-curve. As below in this paper we always assume that E is defined over a polyquadratic field k and that $\phi_\sigma = \phi_\tau$ if and only if $\sigma|_k = \tau|_k$.

2
Since E is a central \mathbb{Q}-curve, there exists an isogeny ϕ_σ from $^\sigma E$ to E with square-free degree d_σ for each σ in $G_\mathbb{Q}$. We put
\[c(\sigma, \tau) := \phi_\sigma^\sigma \phi_\tau \phi_{\sigma \tau}^{-1} \quad \text{for each } \sigma, \tau \text{ in } G_\mathbb{Q}. \quad (1) \]

Then a mapping c is a two-cocycle of $G_\mathbb{Q}$ with values in \mathbb{Q}^*. By taking the degree of both sides, we have $c(\sigma, \tau)^2 = d_\sigma d_\tau d_{\sigma \tau}^{-1}$. Since it follows from $H^1(G_\mathbb{Q}, \mathbb{Q}^*) = \{1\}$ that there exists a mapping β from $G_\mathbb{Q}$ to \mathbb{Q} such that
\[c(\sigma, \tau) = \beta(\sigma)\beta(\tau)\beta(\sigma \tau)^{-1} \quad \text{for each } \sigma, \tau \text{ in } G_\mathbb{Q}, \quad (2) \]
we see that
\[\varepsilon(\sigma) := d_\sigma \beta(\sigma)^{-2} \quad (3) \]
is a character of $G_\mathbb{Q}$.

We introduce our main theorems.

Theorem 1.7. If a prime number N divides $\sharp E_{\text{tors}}(k)$, then N satisfies at least one of the following conditions.

(i) $N \leq 13$.

(ii) $N = 2^{m+2} + 1, \ 3 \cdot 2^{m+2} + 1$ for some positive integer $m \leq \log_2 d$.

(iii) ε is real quadratic and N divides the generalized Bernoulli number $B_{2,\varepsilon}$.

If the scalar restriction of E from k to \mathbb{Q} is of GL_2-type with real multiplications, ε is trivial and thus N is bounded by the constant depending only on the degree d. We conjecture that N always satisfies the condition (i).

Furthermore, under the assumption that each d_σ divides $\sharp E_{\text{tors}}(k)$, we completely determine the square-free divisor of $E_{\text{tors}}(k)$.

Theorem 1.8. Assume that each d_σ divides $\sharp E_{\text{tors}}(k)$. Let N be the product of all prime divisors of $\sharp E_{\text{tors}}(k)$. Then $[k : \mathbb{Q}]$ and N satisfy the following.

<table>
<thead>
<tr>
<th>$[k : \mathbb{Q}]$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2, 3, 5, 6, 7, 10</td>
</tr>
<tr>
<td>2</td>
<td>2, 3, 6, 14</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>≥ 8</td>
<td>empty</td>
</tr>
</tbody>
</table>
We note that each case in the above list occurs. Specially, there is a family of infinitely many \mathbb{Q}-curves with rational torsion points corresponding to each element in the above list except for $N = 14$. In the case of $[k : \mathbb{Q}] = 1$ it is given by Kubert [11]. In the case of $[k : \mathbb{Q}] = 2$ and $N = 2, 3$ it is given by Hasegawa [5].

For example, when $[k : \mathbb{Q}] = 4$ and $N = 6$, E is isomorphic to

$$y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2$$

$$s = \frac{1}{12}(\sqrt{a} + \sqrt{4 + a})(3\sqrt{a} + \sqrt{4 + 9a})$$

for a in \mathbb{Q} such that $\Delta = s^6(s + 1)^3(9s + 1) \neq 0$.

When $N = 14$, there is only one \mathbb{Q}-curve corresponding to the above list. More precisely, $k = \mathbb{Q}(\sqrt{-7})$ and E is defined by the global minimal model:

$$y^2 + (2 + \sqrt{-7})xy + (5 + \sqrt{-7})y = x^3 + (5 + \sqrt{-7})x^2.$$

Furthermore E is a $\overline{\mathbb{Q}}$-simple factor of $J_{0}^{new}(98)$ and there exists an isogeny of degree 2 between E and its non-trivial Galois conjugate curve.

Finally, we explain Theorem 1.8 in terms of modular curves. The existence of a non-CM elliptic curve over k with a k-rational torsion of order N is equivalent to that of a non-cuspidal non-CM k-rational point of the modular curve $X_1(N)$.

Let $X_0^*(N)$ be the quotient curve of the modular curve $X_0(N)$ by the group of Atkin-Lehner involutions of level N. Let π be the natural projection from $X_0(N)$ to $X_0^*(N)$. The isomorphism classes of central \mathbb{Q}-curves are obtained from $\pi^{-1}(P)$ where P is a non-cuspidal non-CM point of $X_0^*(N)(\mathbb{Q})$ and N runs over the square-free integers.

Hence each element in the list of Theorem 1.8 corresponds to the existence of a non-cuspidal non-CM point of $X_1(N)(k) \times_{\mathbb{Q}(1)(\mathbb{Q})} \pi^{-1}X_0^*(M)(\mathbb{Q})$, where M is the least common multiple of d_σ, which is a divisor of N by the assumption of Theorem 1.8.

2 Central \mathbb{Q}-curves over polyquadratic fields

Let N be a prime number. Let E be a central \mathbb{Q}-curve over a polyquadratic field k with a k-rational torsion point Q_1 of order N. We denote the group of N-torsion points on E by $E[N]$. We take a point on $E[N]$ such that $\{Q_1, Q_2\}$ is a $\mathbb{Z}/NZ\mathbb{Z}$-basis of $E[N]$. Let G be the Galois group of k over \mathbb{Q}.

If Q_1 is in the kernel of ϕ_σ for some σ in $G_\mathbb{Q}$, we can see that the N-th root ζ_N of unity is in the definition field of ϕ_σ. Thus we have:
Proposition 2.1. If N divides d_σ for some σ in G_Q, then N is either 2 or 3.

As below we assume that $N > 3$. Then Q_1 is not in the kernel of ϕ_σ for any σ in G_Q. Using the fact that ϕ_σ induces the isomorphism from $^\sigma E[N]$ to $E[N]$, we have Propositions 2.2 and 2.3.

Proposition 2.2. ϕ_σ is defined over k for each σ in G_Q. Specially, E is completely defined over k.

Proposition 2.3. The 2-cocycle c is symmetric. That is, $c(\sigma, \tau) = c(\tau, \sigma)$ for each σ, τ in G_Q.

Since c is symmetric and G is commutative, we may consider that β is a mapping from G to Q^* (cf. e.g. [7]). By (3) the character ε is either trivial or quadratic. Since we can see $\phi_\sigma^* \phi_\sigma = \varepsilon(\sigma) d_\sigma$, we have:

Proposition 2.4. The character ε is even, that is, $\varepsilon(\rho) = 1$, where ρ is the complex conjugation.

We denote by F the extension of Q adjoining all values $\beta(\sigma)$. Since $\beta(\sigma) = \pm \sqrt[3]{\varepsilon(\sigma)d_\sigma}$, F is a polyquadratic field. We denote by A the scalar restriction of E from k to Q. Since E is a central Q-curve completely defined over k, A is an abelian variety of GL_2-type with $End_0^0 A = F$. By using the isomorphisms $V_i(A) \cong \bigoplus \lambda \in \Lambda^i(\lambda)$ and $V_i(A) \cong \bigoplus \tau \in G^i(\tau E)$, we have:

Proposition 2.5. Let k_ε be a field corresponding to the kernel of ε. If E is semistable, k is an unramified extension of k_ε.

For τ in G_Q we have

$$\tau[R_1, R_2] = [R_1, R_2] \begin{bmatrix} 1 & * \\ 0 & \varepsilon(\tau) \chi(\tau) \end{bmatrix},$$

where χ is the cyclotomic character modulo N. Thus $k_\varepsilon(A[\lambda])/k_\varepsilon(\zeta_N)$ is an $\varepsilon\chi^{-1}$-extension (cf. [8], p.547). By modifying Herbrand’s Theorem (cf. e.g. [20], p.101), we have:

Proposition 2.7. If $k(E[N])/k(\zeta_N)$ is unramified and N does not divide the generalized Bernoulli number $B_{2,\varepsilon}$, then $k(E[N]) = k(\zeta_N)$.
3 Proof of Theorem 1.7

Throughout this section we always assume the following:

(i) $N > 13$
(ii) $N \neq 2^{m+2} + 1, 3 \cdot 2^{m+2} + 1$
(iii) $N \nmid B_{2,\varepsilon}$

In this section we give a proof of Theorem 1.7 by modifying the result of Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let p be a prime ideal of k above a prime integer p.

Proposition 3.1. E is semistable over S.

Proof. Let k_p be the completion of k at p and let \mathcal{O}_p be its ring of integers. Let E/\mathcal{O}_p be the Néron model of E/k_p over Spec \mathcal{O}_p. By the universal property of Néron models the morphism from $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p$ to E/k_p extends to a morphism from $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p$ to E/\mathcal{O}_p which maps to the Zariski closure in E/\mathcal{O}_p of $\mathbb{Z}/N\mathbb{Z}/k_p \subset E/k_p$. This group scheme extension H/\mathcal{O}_p is a separated quasi-finite group scheme over \mathcal{O}_p whose generic fibre is $\mathbb{Z}/N\mathbb{Z}$. Since it admits a map from $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p$ which is an isomorphism on the generic fibre, it follows from that H/\mathcal{O}_p is a finite flat group scheme of order N. Since k is polyquadratic and N is odd, the absolute ramification index e_p over Spec \mathbb{Z} is equal to 1 or 2. Since e_p is less than $N - 1$, by the theorem of Raynaud [17, Cor. 3.3.6] we have $H/\mathcal{O}_p \cong \mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p$. Therefore we shall identify H/\mathcal{O}_p with $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p$.

Suppose that the component $(E/p)^0$ is an additive group. Then the index of $(E/p)^0$ in E/p is less than or equal to 4. It follows that $\mathbb{Z}/N\mathbb{Z}/p \subset (E/p)^0$. Thus, the residue characteristic p is equal to N. By Serre-Tate [18] there exists a field extension k'_p/k_p whose relative ramification index is less than or equal to 6, and such that E/k'_p possess a semi-stable Néron model $\mathcal{E}/\mathcal{O}_p'$ where \mathcal{O}_p' is the ring of integers in k'_p. Then we have a morphism ψ from E/\mathcal{O}_p' to $\mathcal{E}/\mathcal{O}_p'$ which is an isomorphism on generic fibres, using the universal Néron property of $\mathcal{E}/\mathcal{O}_p'$. The mapping ψ is zero on the connected component of the special fibre of E/\mathcal{O}_p' since there are no non-zero morphisms from an additive to a multiplicative type group over a field. Consequently, the mapping ψ restricted to the special fibre of $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p'$ is zero. Using Raynaud [17, Cor. 3.3.6], again, we see that this is impossible. Indeed, since k is polyquadratic and N is odd, the absolute ramification index of k'_p is less than or equal to 12, which leads to a contradiction to the assumption $N - 1 > 12$.

\[\square \]
Proposition 3.2. Assume that p is neither 2 nor 3. Then p a multiplicative prime of E. Furthermore the reduction Q_1 does not specialize mod p to $(E/p)^0$.

Proof. If p is a good prime of E, then E/p is an elliptic curve over O/p containing a rational torsion point of order N. By the Riemann hypothesis of elliptic curves over the finite field O/p, N must be less than or equal to $(1 + p^{h/2})^2$, where f_p is the degree of residue field. Since k is polyquadratic, we have $f_p = 1, 2$. Thus we have $(1 + p^{h/2})^2 \geq 16$. Since N is prime, $N \geq 17$ follows from the assumption $N > 13$. Hence this is impossible, and E has multiplicative reduction at p.

Suppose that Q_1 specialize to $(E/p)^0$. Over a quadratic extension $k_{/p}$ we have an isomorphism $E_{/k} \cong \mathbb{G}_{m/k}$, so that N divides the cardinality of k^*. Since it follows from $f_p = 1, 2$ that the cardinality of k^* is one of 3,8,15,80, this is impossible by the assumption $N > 13$.

The pair $(E,(Q_1))$ defines a k-rational point on the modular curve $X_0(N)_k$. If $p \neq N$, we denote by $x_{/p}$ the image of x on the reduced curve $X_0(N)/(Q_{h/p})$. When p is a potentially multiplicative prime of E, we know that $x_{/p} = \infty_{/p}$ if the point Q_1 does not specialize to the connected component $(E/p)^0$ of the identity (cf. [8], p.547).

We denote $J_0(N)/\mathbb{Q}$ the jacobian of $X_0(N)/\mathbb{Q}$. The abelian variety $J_0(N)$ is semi-stable and has good reduction at all primes $p \neq N$ ([1]). We denote by J/Q the Eisenstein quotient of $J_0(N)/\mathbb{Q}$. Then Mazur [13] shows that $J(Q)$ is finite of order the numerator of $(N - 1)/12$, which is generated by the image of the class $0 - \infty$ by the projection from $J_0(N)$ to J

Proposition 3.3. Assume that N is not of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$. If p is any bad prime of E, then Q_1 does not specialize to $(E/p)^0$.

Proof. Define a map g from $J_0(N)(k)$ to $J_0(N)(\mathbb{Q})$ by $g(x) = \sum_{\sigma \in G} \sigma x - d \cdot \infty$, where $d := [k : \mathbb{Q}]$. Let f be the composition of g with the projection h from $J_0(N)$ to J. Then $f(x)$ is a torsion point, since $J(Q)$ is a finite group and $f(x)$ is \mathbb{Q}-rational. By Proposition 3.2 we have $\sigma x_{/p} = \infty_{/p}$ for each σ and p dividing 2, so we have

$$f(x)/p = h(\sum_{\sigma \in G} \sigma x_{/p} - d \cdot \infty_{/p}) = 0,$$

so $f(x)$ has order a power of 2. However, $f(x)/p = 0$ for p dividing 3 by the same reasoning. Thus, $f(x)$ has order a power of 3, and so $f(x) = 0$.

If p is a bad prime of E which Q_1 does not specialize to $(E/p)^0$, then $x_{/p} = 0/p$. By Proposition 3.2 we may assume that the residue characteristic
Proof. If E has good reduction at p and $p \neq N$, then $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p (cf. Serre-Tate[18]).

If E has good reduction at p and $p = N$, then $E[N]$ is a finite flat group scheme over \mathcal{O}_p. Then there is a short exact sequence of finite flat group schemes over \mathcal{O}_p:

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \mu_N \to 0.$$

However, $E[N]$ also fits into a short exact sequence

$$0 \to E[N]^0 \to E[N] \to E[N]^\text{ét} \to 0,$$

where $E[N]^0$ is the largest connected subgroup of $E[N]$ and $E[N]^\text{ét}$ is the largest étale quotient (cf. [14], p.134-138). Clearly we have $E[N]^0 = \mu_N$, and this gives us splitting of the above exact sequences. Since $[k(E[N]) : k(\zeta_N)]$ divides N, the action of the inertia subgroup for p in $G_{k(\zeta_N)}$ on $E[N]$ is trivial. Namely, $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p.

Assume that E has bad reduction at p. Since $J_0(N)$ is semistable, $E[N]/p$ is a quasi-finite flat group scheme over \mathcal{O}_p (cf. [4]), and fits into a short exact sequence

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \overline{\mu}_N \to 0,$$

where $\overline{\mu}_N$ is a quasi-finite flat group with generic fibre isomorphic to μ_N. Since Q_1 does not specialize to $(E/p)^0$, we see that the kernel of multiplication by N on $(E/p)^0$ maps injectively to $\overline{\mu}_N$. Thus, $\overline{\mu}_N$ is actually a finite flat group scheme. If $p \neq N$, then $E[N]$ is étale, and so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p. If $p = N$, then $\mu_N = \overline{\mu}_N$ by Raynaud [17, Cor. 3.3.6] and $e_N \leq 2 < N - 1$. We see that $E[N]/\mathcal{O}_p = \mathbb{Z}/N \oplus \mu_N$, so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p.

By Propositions 2.7 and 3.4, we see that $k(E[N]) = k(\zeta_N)$. Thus $\langle Q_2 \rangle$ is k-rational.

8
Proposition 3.5. The quotient curve \(E/\langle Q_2 \rangle \) is again a central \(\mathbb{Q} \)-curve over \(k \) with \(N \)-rational torsion point. Furthermore the image of \(Q_1 \) is \(N \)-rational point of \(E/\langle Q_2 \rangle \) and

\[
\begin{array}{ccc}
\sigma E & \xrightarrow{\phi_\sigma} & E \\
\downarrow & & \downarrow \\
\sigma \left(E/\langle Q_2 \rangle \right) & \xrightarrow{\phi_\sigma} & E/\langle Q_2 \rangle
\end{array}
\]

Proof. Since \(\langle Q_2 \rangle \) is \(k \)-rational, the quotient curve \(E/\langle Q_2 \rangle \) is a \(\mathbb{Q} \)-curve over \(k \). We show that \(\phi_\sigma(\sigma Q_2) \subseteq \langle Q_2 \rangle \). We may put \(\phi_\sigma(\sigma Q_2) = aQ_1 + bQ_2 \). Since \(Q_1 \) is \(k \)-rational, \(\phi_\sigma(\tau^* Q_2) = aQ_1 + b^* Q_2 \) for each \(\tau \in G_k \). Since \(\langle Q_2 \rangle \) is \(k \)-rational, \(a \neq 0 \) implies \(\tau^* Q_2 = Q_2 \) and thus \(k(E[N]) = k \). Since \(k \) is polyquadratic and \(N > 3 \), this leads to contradiction.

Since \(\phi_\sigma(\sigma Q_2) \subseteq \langle Q_2 \rangle \), we have the above diagram. Specially \(E/\langle Q_2 \rangle \) is again central \(\mathbb{Q} \)-curve. \qed

Proof of Theorem 1.7. By Proposition 3.5 we get a sequence central \(\mathbb{Q} \)-curves over \(k \)

\[E \rightarrow E^{(1)} \rightarrow E^{(2)} \rightarrow E^{(3)} \rightarrow \cdots \]

each obtained from the next by an \(N \)-isogeny, and such that the original group \(\mathbb{Z}/N\mathbb{Z} \) maps isomorphically into every \(E^{(j)} \).

It follows from Shafarevic theorem that among the set of \(E^{(j)} \) there can be only a finite number of \(k \)-isomorphism class of elliptic curve represented. Consequently, for some indecies \(j > j' \) we must have \(E^{(j)} \cong E^{(j')} \). But \(E^{(j)} \) maps to \(E^{(j')} \) by nonscalar isogeny. Therefore \(E^{(j)} \) is a CM elliptic curve and so is \(E \). This contradicts to the assumption that \(E \) is non-CM. \qed

4 Proof of Theorem 1.8

We recall that each element in the list of Theorem 1.8 corresponds to existence of a non-cuspidal non-CM point of \(X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1} X_0^*(M)(\mathbb{Q}) \). Suppose that there exists such a point. Then by Proposition 2.1 we have \(M = 2, 3 \). By using Theorem 1.7 and Proposition 2.5 we see that each divisor of \(N \) less than or equal to 13. Thus there are only finite couples \((N, M)\) such that \(X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1} X_0^*(M)(\mathbb{Q}) \) has a non-cuspidal non-CM point. For such \((N, M)\), by computing defining equations, we check whether there is a non-cuspidal non-CM point of \(X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1} X_0^*(M)(\mathbb{Q}) \) or not.
References

Fumio SAIRAIJI,
Hiroshima International University,
Hiro, Hiroshima 737-0112, Japan.
e-mail address: sairaiji@it.hirokoku-u.ac.jp

Takuya YAMAUCHI,
Hiroshima University,
Higashi-hiroshima, Hiroshima 739-8526, Japan.
e-mail address: yamauchi@math.sci.hiroshima-u.ac.jp